HDAC and Proteasome Inhibitors Synergize to Activate Pro-Apoptotic Factors in Synovial Sarcoma
نویسندگان
چکیده
Conventional cytotoxic therapies for synovial sarcoma provide limited benefit, and no drugs specifically targeting its driving SS18-SSX fusion oncoprotein are currently available. Patients remain at high risk for early and late metastasis. A high-throughput drug screen consisting of over 900 tool compounds and epigenetic modifiers, representing over 100 drug classes, was undertaken in a panel of synovial sarcoma cell lines to uncover novel sensitizing agents and targetable pathways. Top scoring drug categories were found to be HDAC inhibitors and proteasomal targeting agents. We find that the HDAC inhibitor quisinostat disrupts the SS18-SSX driving protein complex, thereby reestablishing expression of EGR1 and CDKN2A tumor suppressors. In combination with proteasome inhibition, HDAC inhibitors synergize to decrease cell viability and elicit apoptosis. Quisinostat inhibits aggresome formation in response to proteasome inhibition, and combination treatment leads to elevated endoplasmic reticulum stress, activation of pro-apoptotic effector proteins BIM and BIK, phosphorylation of BCL-2, increased levels of reactive oxygen species, and suppression of tumor growth in a murine model of synovial sarcoma. This study identifies and provides mechanistic support for a particular susceptibility of synovial sarcoma to the combination of quisinostat and proteasome inhibition.
منابع مشابه
Synergism of Heat Shock Protein 90 and Histone Deacetylase Inhibitors in Synovial Sarcoma
Current systemic therapies have little curative benefit for synovial sarcoma. Histone deacetylase (HDAC) inhibitors and the heat shock protein 90 (Hsp90) inhibitor 17-AAG have recently been shown to inhibit synovial sarcoma in preclinical models. We tested combinations of 17-AAG with the HDAC inhibitor MS-275 for synergism by proliferation and apoptosis assays. The combination was found to be s...
متن کاملmTOR kinase inhibitors synergize with histone deacetylase inhibitors to kill B-cell acute lymphoblastic leukemia cells
High activity of the mechanistic target of rapamycin (mTOR) is associated with poor prognosis in pre-B-cell acute lymphoblastic leukemia (B-ALL), suggesting that inhibiting mTOR might be clinically useful. However, emerging data indicate that mTOR inhibitors are most effective when combined with other target agents. One strategy is to combine with histone deacetylase (HDAC) inhibitors, since B-...
متن کاملEnhancement of pomalidomide anti-tumor response with ACY-241, a selective HDAC6 inhibitor
Thalidomide-based Immunomodulatory Drugs (IMiDs®), including lenalidomide and pomalidomide, are effective therapeutics for multiple myeloma. These agents have been approved with, or are under clinical development with, other targeted therapies including proteasome inhibitors, αCD38 monoclonal antibodies, as well as histone deacetylase (HDAC) inhibitors for combination therapy. HDAC inhibitors b...
متن کاملERAD inhibitors integrate ER stress with an epigenetic mechanism to activate BH3-only protein NOXA in cancer cells.
The ubiquitin-proteasome system has recently emerged as a major target for drug development in cancer therapy. The proteasome inhibitor bortezomib has clinical activity in multiple myeloma and mantle cell lymphoma. Here we report that Eeyarestatin I (EerI), a chemical inhibitor that blocks endoplasmic reticulum (ER)-associated protein degradation, has antitumor and biologic activities similar t...
متن کاملHDAC Inhibitors and Heat Shock Proteins (Hsps)
Epigenetic alterations, including DNA acetylation, hypermethylation and hypomethylation, and the associated transcriptional changes of the affected genes are central to the evolution and progression of various human cancers, including pancreatic cancer. Cancer-associated epigenetic alterations are attractive therapeutic targets because such epigenetic alterations, unlike genetic changes, are po...
متن کامل